Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 

Еще один год жизни Вселенной ...

Еще один год жизни Вселенной ...

Сергей Попов, Максим Борисов / Газета "Троицкий вариант"

Поток открытий за последние десятилетия стал столь впечатляющим, что порой не хватает сил удивляться. Даже весьма серьезные работы не всегда воспринимаются как существенные шаги вперед. В одном лишь архиве электронных препринтов arXiv.org за 2008 год появилось свыше 10 тысяч статей. При этом, конечно, туда попадают не все интересные работы.

В основном прогресс в астрофизике связан с появлением новых инструментов. И 2008 год оставил нам два больших вопроса, связанных с обнародованием экспериментальных данных коллабораций DAMA/Libra и PAMELA. В апреле было сделано заявление о том, что аппаратура проекта DAMA/Libra регистрирует сигнал, который может свидетельствовать о первой прямой (т.е. лабораторной) регистрации частиц темного вещества. Это сообщение стало итогом серьезной многолетней работы, и ученые, входящие в эту коллаборацию, уверены в том, что им удалось учесть все возможные источники ошибок. Однако в научном сообществе возобладали все-таки скептические настроения. К сожалению, та область параметров, на которую указывают результаты DAMA/Libra, пока не подтверждается по данным других экспериментов, если не делать дополнительных предположений о свойствах частиц темной материи. Значит, придется ждать новых данных от других групп, чтобы разобраться с загадочными результатами DAMA/Libra.


Переменность сигнала в эксперименте, соответствующая движению Земли вокруг Солнца. Именно такую переменность должны были бы давать частицы темного вещества. Приведены данные как предыдущего эксперимента DAMA/NaI (слева на графике), так и нового DAMA/Libra. Из статьи arXiv: 0804.2741.



Второй интригующий результат получен в космическом эксперименте PAMELA. Приборы зарегистрировали избыток позитронов в космических лучах (arxiv:0810.4995). Происхождение этой особенности пока не ясно. Наиболее волнующей для ученых стала гипотеза, согласно которой лишние позитроны возникают при распаде частиц темного вещества. Однако в принципе есть и другие возможности. Например, близкие пульсары также могут дать наблюдаемый избыток позитронов. Смущает и то, что коллаборация была вынуждена опубликовать результаты ранее намеченного срока, поскольку после выступления одного из представителей проекта на научной конференции с предварительными результатами одна за другой стали появляться статьи, в которых теоретики торопились предложить свои модели темного вещества и альтернативы, способные объяснить данные PAMELA (см. ТрВ N16). Значит, опять, как и в случае с DAMA/Libra, нельзя сказать, что открытие уже сделано, надо ждать новых данных как с самой PAMELA, так и от других экспериментов. Если все подтвердится, то этот год войдет в историю как год величайшего перелома в изучении темного вещества.


Детектор PAMELA. С сайта http://hep.fi.infn.it/PAMELA/.



В 2008 году продолжали вводиться в строй и другие новые инструменты. Так, идут работы над совершенствованием лабораторных детекторов частиц темной материи и над созданием установки AMS-02, которая, как и PAMELA, предназначена для изучения космических лучей. В 2008 году состоялся также успешный запуск гамма-обсерватории GLAST (ТрВ N6), получившей затем имя Fermi. Одной из важнейших задач этого проекта является обнаружение гамма-лучей, возникающих при аннигиляции частиц темного вещества. Не исключено, что именно данные с Fermi сыграют ключевую роль в разгадке тайны темной материи.


Логотип проекта GLAST, который сейчас переименован в честь Энрико Ферми.



Что касается совершенно достоверных результатов, то здесь по итогам 2008 года трудно выделить явных лидеров. Пожалуй, по сумме баллов выигрывают экзопланеты (общее поголовье которых за прошедший год изрядно выросло). В 2008 году было сделано несколько интересных открытий в этой области. Во-первых, появились новые прямые изображения экзопланет (см. ТрВ N17), и в некоторых случаях здесь уместно слово впервые. Впервые удалось непосредственно увидеть несколько планет (arxiv:0811.2606 0811.1994), обращающихся вокруг одной звезды HR 8799 из созвездия Пегаса (хотя, конечно, планетные системы были известны и ранее). Появились первые изображения планет около звезд, подобных Солнцу (речь, например, о звезде 1RSX J160929.1-210524, ТрВ N13). Удалось получить изображение экзопланеты у звезды Бета Живописца, которая расположена к своей родительской звезде ближе, чем какая-либо иная планета на других подобных снимках. Космический телескоп NASA Хаббл сфотографировал планету у края пылевого диска Фомальгаута (HD 216956) самой яркой звезды в созвездии Южной Рыбы и одной из ярчайших звезд на всем земном небосклоне. Имеется уже две фотографии экзопланеты, полученные в 2004 и 2006 годах, которые свидетельствуют о том, что планета движется по орбите в полном соответствии с законами небесной механики. Новооткрытая планета (Фомальгаут b), вероятно, близка по массе к Юпитеру, но при этом удалена от своей звезды в четыре раза дальше, чем Нептун от Солнца.

Во-вторых, были открыты интересные экзопланетные системы. Например, у звезды HD40307 открыто сразу три так называемые сверхземли. Массы этих планет составляют 4,2, 6,9 и 9,2 массы Земли. Правда, сама система вовсе не похожа на Солнечную: орбиты планет очень близки к звезде, и годы там длятся всего лишь 4,3, 9,6 и 20,5 суток (arxiv:0806.4587).

В-третьих, обнаружена система, которая может оказаться похожей на нашу (OGLE-2006-BLG-109L). Пока там с помощью микролинзирования удалось выявить две планеты, которые по своим параметрам (масса, расстояние от звезды) очень похожи на пару Юпитер-Сатурн (arxiv:0802.1920).

Наконец, уже в декабре появилось сообщение об открытии планеты вокруг звезды, обладающей рекордными параметрами. В стандартной картине образования планет звезда оказывается медленно вращающейся. Однако транзитная планета, обнаруженная в рамках проекта OGLE (OGLE2-TR-L9b), обращается вокруг быстровращающейся звезды. Кроме того, это самая горячая звезда их всех, около которых обнаружены планеты (arxiv:0812.0599).


Фотография экзопланеты у Беты Живописца (светлое пятнышко левее и выше центра). Фото ESO/A.-M. Lagrange et al. с сайта ESO.



В исследованиях гамма-всплесков существенных прорывов может быть и не было, однако, тем не менее, в 2008 году появилось как минимум два весьма интересных результата. Во-первых, это, конечно, всплеск 080319b (arxiv:0805.1557 0803.3215). Он сопровождался очень ярким (потенциально видимым невооруженным глазом) оптическим транзиентом (ТрВ N1). Впервые удалось с высоким временным разрешением получить данные о первых секундах всплеска в оптическом диапазоне. Обнаружена интересная переменность в течение этих первых секунд.


Переменность в оптического транзиента, сопровождавшего гамма-всплеск GRB 080319b по данным коллаборации TORTORA.



Второй любопытный результат связан с всплеском 080913 (напомним, что числа означают год, месяц и день регистрации, а если всплесков было несколько за день, то добавляются латинские буквы в алфавитном порядке). Этот взрыв произошел на очень большом красном смещении z=6,7. Но относится он не к классу длинных всплесков, обычно регистрируемых в молодой Вселенной, а к жестким коротким всплескам (arxiv:0810.2107). Впервые удалось увидеть всплеск такого типа на столь далеком (и надежно определенном!) красном смещении, Вселенной тогда было менее одного миллиарда лет отроду. В стандартной модели такие всплески порождаются слияниями двух нейтронных звезд или нейтронной звезды и черной дыры.


Показано положение всплеска на диаграмме длительность-жесткость. Серыми точками показаны другие всплески по данным SWIFT. T90 время, за которое излучается 90% энергии всплеска. Показатель жесткости (hardness ratio), отложенный по вертикальной оси, определяется как отношение потоков в разных энергетических каналах детектора. Чем выше точка смещена по вертикальной оси, тем жестче спектр излучения всплеска. Видно разделение на длинные мягкие (их большинство) и короткие жесткие всплески. Кружок с числом 6.7 отмечает положение всплеска GRB 080913 прямо по данным наблюдений. Тогда он попадает в длинные мягкие. Точка 0.0 отмечает его положение так, как если бы его измерял наблюдатель, близкий к всплеску. Видно, что он был бы жестким коротким. Также отмечены точки для положения всплеска на z=0.5, где в среднем сидят наблюдаемые нами короткие жесткие всплески, и 2.0, где сидят длинные мягкие. Из статьи arXiv:0810.2107.



В астрофизике нейтронных звезд самым интересным можно считать исследование поведения пульсара PSR J1846-0258. Эта молодая нейтронная звезда в остатке сверхновой Kes 75, которая ранее демонстрировала типично пульсарное поведение, а затем вдруг резко увеличила свою светимость и начала испускать вспышки, подобные всплескам магнитаров (arxiv: 0802.1242, 0802.1704). Таким образом ученым удалось увидеть превращение обычного пульсара (пусть и очень молодого и обладающего очень сильным магнитным полем) в магнитар. Это открытие делает картину классификации молодых нейтронных звезд еще более запутанной. Только мы начали привыкать к разнообразию молодых нейтронных звезд, как открылось еще и то, что они могут существенно изменять свои астрофизические проявления и переходить из класса в класс.


Слева рентгеновское изображение пульсара и его туманности в остатке сверхновой Kes 75 в 2000 г. А справа в 2006 году, когда начался период активности. Снимок обсерватории Чандра, NASA.

Причины различий между молодыми нейтронными звездами пока неизвестны. Также неизвестно и происхождение мощных полей магнитаров. В последнее время начала набирать популярность гипотеза, согласно которой мощное магнитное поле нейтронных звезд связано с мощным полем звезды-прародителя. Эта гипотеза имеет ряд недостатков, но, тем не менее, она активно обсуждается. В этом году появилась статья (arxiv:0803.2691), в которой рассказано об обнаружении двух чрезвычайно массивных звезд с гигантским магнитным полем около килогаусса. Авторы полагают, что именно такие объекты после взрыва сверхновой превращаются в магнитары.



В исследованиях сверхновых получен очень красивый результат. Исследуя остаток Кассиопея А, ученые смогли определить тип сверхновой, поймав световое эхо (arxiv:0805.4557). Изучая спектр отраженного сигнала, астрономы, по сути, получают спектр сверхновой во время самого взрыва. Согласно выводу, сделанному на основании данного исследования, сверхновая Кассиопея А относилась в классу IIb. Этот результат можно считать весьма существенным, поскольку практически нет случаев, когда нам доступна информация одновременно о типе взрыва, его остатке и о взорвавшейся звезде.


Остаток сверхновой Кассиопея А. Изображение состоит из комбинации оптических, инфракрасных и рентгеновских данных, полученных космическими обсерваториями Хаббл, Чандра и Спитцер.



Изучить механизм взрыва сверхновой помогут, вероятно, также и наблюдения рентгеновской вспышки в галактике NGC 2770 (связанной с выходом ударной волны из звезды-прародителя), а также начальных этапов взрыва красного сверхгиганта   событие SNLS-04D2dc (уже в оптическом диапазоне и силами другой группы). Соответствующие работы также были опубликованы в 2008 году, и до последнего времени столь ранних наблюдений развития вспышки не было (arxiv:0803.3596 0802.1712).

В процессе поиска сверхновых ученые иногда натыкаются на совершенно загадочные вспышки. Так, буквально на пустом месте (ни до, ни после вспышки там не удалось ничего обнаружить) удалось наблюдать очень длинный оптический всплеск SCP 06F6 (arxiv:0809.1648). В течение примерно ста дней блеск обнаруженного источника возрастал, а затем примерно столько же времени спадал. Это не похоже на микролинзирование. Вообще ни на что не похоже. Поэтому авторы открытия полагают, что ими обнаружено нечто принципиально новое.


Кривая блеска транзиента SCP 06F6 (цветные символы) в сравнении с кривыми блеска некоторых сверхновых (arxiv:0809.2562).



Отчет о наблюдениях других непонятных вспышек был опубликован в двух статьях в Nature (arxiv:0809.4231 0809.4043). После обнаружения 10 июня 2007 года спутником SWIFT одного из гамма-всплесков были проведены его наблюдения в других диапазонах (рентгеновском и оптическом). Оказалось, что мы имеем дело не с обычным далеким космическим гамма-всплеском, а с активностью некоего относительно близкого объекта в нашей Галактике. Самым необычным проявлением его активности являются оптические вспышки продолжительностью в десятки секунд. Сами авторы открытия полагают, что наблюдали необычную активность уже известного ученым объекта магнитара. Однако, на наш взгляд, оснований для таких заявлений пока явно недостаточно. Например, гипотеза о вспышках сильно замагниченного белого карлика выглядит ничуть не хуже.


Оптические всплески загадочного источника SWIFT J185509+261406. Из статьи arXiv:0809.4231.



А как обстоят дела с черными дырами? В 2008 году появилось несколько работ на эту тему, заслуживающих упоминания.

В самом начале года появилось сообщение о том, что по данным наблюдений на космическом телескопе Хаббл и наземном телескопе Джемини, в гигантском звездном скоплении Омега Центавра находится черная дыра промежуточной массы (arxiv:0801.2782). До этого ученым было известно лишь о двух типах черных дыр сверхмассивных черных дырах в ядрах галактик (массой в сотни тысяч, миллионы или даже миллиарды солнечных масс) и черных дырах звездной массы, возникающих в результате коллапса ядер массивных звезд. Черные дыры промежуточной массы (от десятков до десятков тысяч солнечных масс) долгое время находить не удавалось. А теперь все указывает на то, что в Омеге Центавра масса черной дыры составляет 30-50 тысяч солнечных масс, то есть это явно искомая черная дыра промежуточной массы. Как же возник такой объект? Скорее всего, он является родственником сверхмассивных черных дыр, поскольку Омега Центавра не обычное галактическое скопление. Оно могло бы быть небольшой галактикой, спутником нашего Млечного пути. Однако в свое время было захвачено и ободрано. Теперь мы классифицируем его как скопление, но о временах его былой славы напоминает массивная черная дыра.


На рисунке показано два распределения плотности в скоплении. Нижняя кривая соответствует распределению звезд светящегося вещества. Верхняя отражает вклад темной составляющей массы. Эта кривая получена по результатам изучения распределения скоростей звезд в центральной части скопления. Существенная разница между двумя кривыми говорит о том, что в центре скопления присутствует невидимая масса. Из статьи arXiv:0801.2782.



Взаимодействие Омега Центавра и нашей Галактики это взаимоотношения гиганта и карлика. А что будет при слиянии двух примерно равных по массе галактик с массивными черными дырами в их центрах? Черные дыры могут со временем слиться в единую еще более крупную черную дыру. При этом существенным может стать эффект гравитационно-волновой отдачи, в результате которого итоговая черная дыра приобретет довольно заметную скорость относительно центра масс сливавшейся системы. Связано это с несимметричным излучением гравитационных волн, которые и уносят часть импульса (закон его сохранения, конечно, никто не отменял). Слияния галактик в молодой Вселенной происходили довольно часто, поэтому в достатке должны попадаться такие и отскочившие черные дыры. В 2008 году бы