От плазмы солнечной короны к плазме на нейтронных звездах
12.12.2005 20:11 | "Соросовская Энциклопедия"
1. Циклотронный механизм излучения астрофизической плазмы
Несколько десятилетий в астрофизике широко используется для интерпретации наблюдений в радио-, оптическом и рентгеновском диапазонах магнитотормозное излучение релятивистских электронов. Это излучение, возникающее при движении электронов в магнитном поле, называют (в зависимости от величины отношения кинетической энергии электрона E к его энергии покоя mc2 ) циклотронным при E≪mc2, гиросинхротронным при E=mc2 и синхротронным при E≫mc2. Особенно известен синхротронный механизм излучения, который предложен К. Киппенхойером для объяснения космического радиоизлучения и получил глубокое развитие в работах советских теоретиков В.Л. Гинзбурга и И.С. Шкловского. Характерная циклическая частота, соответствующая максимуму спектра синхротронного излучения, ω≈ωB (E/(mc2))2, за счет больших значений релятивистского фактора E/(mc2)≫1 может стать много больше электронной гирочастоты ωB=eB/(mc) (здесь e – заряд электрона, B – индукция магнитного поля). Поэтому с помощью синхротронного механизма оказалось возможным объяснить появление высокочастотного излучения в объектах, имеющих весьма слабые магнитные поля: излучения далеких радиогалактик, нетеплового излучения нашей Галактики, остатков вспышек сверхновых звезд. Этот механизм эффективно действует в знаменитой Крабовидной туманности – остатке сверхновой 1054 года, создавая в ней наблюдаемое радио-, оптическое и рентгеновское излучение. Синхротронный механизм действует и в сильных магнитных полях. Так, например, оптическое и рентгеновское излучение пульсара в Крабовидной туманности, по всей вероятности, представляет собой синхротронное излучение релятивистских электронов в мощном магнитном поле нейтронной звезды – пульсара.
Наряду с синхротронным, в последнее время все большее значение в астрофизике приобретает циклотронный механизм излучения нерелятивистских электронов со скоростями, малыми по сравнению со скоростью света c. Такие электроны вращаются в магнитном поле с частотой ωB и дают излучение на частотах, близких к гирочастоте и ее гармоникам, ω≈ sωB, s=1, 2, 3... В одном и том же магнитном поле частота циклотронного излучения много меньше, чем частота синхротронного излучения. Поэтому циклотронное излучение может попадать в радио-, оптическую либо рентгеновскую часть спектра лишь за счет высоких значений магнитного поля в источниках излучения. Последнее условие сразу же указывает набор объектов, в которых может эффективно действовать циклотронный механизм излучения – это объекты, обладающие сильным магнитным полем. Так, в активных областях солнечной короны и на магнитных Ар-звездах, где величина индукции магнитного поля B достигает 102-104 Гс, частота ωB находится в радиодиапазоне. На магнитных белых карликах (полярах), где поле достигает величин 107-109 Гс, циклотронные эффекты проявляются в инфракрасном (ИК), оптическом и ультрафиолетовом (УФ) диапазонах. Наконец, на нейтронных звездах с B= 1011-1013 Гс эти эффекты будут характерны для рентгеновской части спектра.
Увеличение магнитного поля на десять порядков при рассмотрении циклотронного эффекта на различных астрономических объектах (Солнце – белый карлик – нейтронные звезды) меняет характер взаимодействия излучения с плазмой на циклотронных частотах, которое влияет на наблюдаемые спектры излучения объектов.
Многообразие циклотронных эффектов в астрофизических объектах зависит главным образом от значений трех параметров: индукции магнитного поля B, концентрации плазмы N и ее температуры T . Эти параметры определяют два вида критериев, устанавливающих характер взаимодействия циклотронного излучения с плазмой.
К первому типу относятся критерии, определяющие распространение циклотронного излучения в плазме с магнитным полем. В такой плазме на любой частоте могут существовать электромагнитные волны двух видов – обыкновенные и необыкновенные (их называют также нормальными волнами или модами). Они отличаются друг от друга скоростью распространения и поляризацией (то есть характером изменения электрического и магнитного полей в каждой точке пространства), от которой, в свою очередь, зависит эффективность взаимодействия излучения с плазмой.
Мощность циклотронного излучения в пустоте меняется примерно как β 2s-2 начиная с первой гармоники (здесь β – отношение скорости электрона к скорости света c, β=υ/c).
В достаточно плотной плазме, для которой выполнен критерий ωp2≥ ωB2 βт ( ωp=(4πe2 N/m)0,5 – плазменная частота, βт – отношение тепловой скорости электронов к скорости света), нормальные волны эллиптически поляризованы, причем необыкновенная мода на первой гармонике, как и обыкновенная, взаимодействует с плазмой очень слабо. Поэтому в плотной плазме имеет место эффект депрессии излучения на первой гармонике: циклотронное излучение на частоте ωB в βт2 раз слабее, нежели в пустоте. На высших гармониках эффективность циклотронного излучения и поглощения по-прежнему убывает примерно по закону βт2s-2.
Если концентрация плазмы относительно низка, а индукция магнитного поля достаточно велика, то выполняется критерий разреженной плазмы: ωp2≪ ωB2 βт.
В разреженной плазме поляризация нормальных волн меняется, эффект депрессии исчезает и необыкновенная мода на первой гармонике наиболее сильно взаимодействует с плазмой.
Наконец, в сверхсильных магнитных полях, близких к критическому значению Bкрит ≈ 4·1013 Гс, для которого ħωB = mc2 ( ħ – постоянная Планка), даже вакуум приобретает специфические свойства и становится похожим на анизотропный кристалл – он поляризуется и намагничивается. В такой необычной среде, как в настоящем кристалле, также существуют обыкновенные и необыкновенные волны. Моды намагниченного вакуума линейно поляризованы. Такая поляризация нормальных волн сохраняется и в присутствии разреженной плазмы при условии
(ωp2/ (ω2βт))≪ 1/(45π)(e2/(ħc)) (B 2/Bкрит2). | (1) |
Характер элементарных процессов циклотронного излучения и поглощения в плазме определяется другим критерием. Эти процессы целиком зависят от распределения излучающих частиц (электронов) по скоростям (прежде всего поперечным по отношению к магнитному полю), которое устанавливается в основном под действием двух факторов: столкновений между частицами и излучения. Поскольку эффективность циклотронного взаимодействия излучения с плазмой быстро падает с ростом номера гармоники, наиболее сильное влияние на распределение электронов по скоростям оказывает излучение на гирочастоте (точнее, та его компонента, которая в соответствии с вышеприведенными критериями в тех или иных условиях взаимодействует с плазмой лучше всего).
Если выполнено неравенство t⊥≫ tст, где t⊥ – время циклотронного высвечивания энергии электрона в поперечном направлении, а tст – время свободного пробега электрона между столкновениями, то реализуется случай столкновительной плазмы. За счет частых столкновений функция распределения электронов поддерживается равновесной (максвелловской) с некоторой температурой, не зависящей от излучения на гирочастоте. За поглощением излучения на первой гармонике практически всегда следует столкновение, в результате которого энергия передается в тепловое движение плазмы. Возможен и обратный процесс – испускание излучения после столкновительного возбуждения электрона. При этом излучаемая энергия черпается из теплового движения электронов.
Перенос излучения в протяженной области столкновительной плазмы зависит от ее оптической толщины τ – отношения линейного размера области к длине пробега кванта излучения. Если плазма оптически толстая, τ≫1, то все падающее извне излучение поглощается, а интенсивность Iω собственного излучения, испускаемого плазмой в каждой моде, совпадает с интенсивностью излучения абсолютно черного тела Bω(T) c температурой, равной кинетической температуре плазмы T:
В случае бесстолкновительной плазмы, t⊥≪ tст, поперечное распределение электронов по скоростям устанавливается в результате процессов поглощения и испускания циклотронного излучения на первой гармонике, цепочка которых лишь изредка прерывается столкновениями. Теперь уже поперечная температура T⊥ определяется не столкновениями, а интенсивностью излучения на первой гармонике. Основным радиационным процессом в таком случае является резонансное циклотронное рассеяние на первой гармонике, которое составляют последовательные процессы поглощения и испускания; при этом меняется направление распространения излучения и его частота. Лишь изредка поглощенный фотон гибнет за счет столкновения, перехватывающего энергию возбужденного электрона; доля таких случаев (равно как и обратных процессов рождения фотонов за счет столкновительного возбуждения) составляет ε = t⊥/ tст≪1. Влияние высших гармоник на поперечное распределение электронов по скоростям пренебрежимо мало. Они взаимодействуют с плазмой посредством истинного поглощения и испускания при заданной температуре T⊥.
Перенос циклотронного излучения в однородном слое бесстолкновительной плазмы с сильным рассеянием на гирочастоте можно наглядно представить как случайные блуждания фотонов. Пройдя расстояние, для которого τ ≈1, фотон первой гармоники рассеивается и начинает двигаться в другом направлении; испытав примерно ε-1 рассеяний, он гибнет в результате истинного поглощения. Расстояние, пройденное фотоном за время случайных блужданий, зависит от числа шагов n как n0,5. Поэтому величина τтерм ≈ ε-0,5 соответствует оптической толщине, на которой происходит термализация излучения – истинное поглощение фотонов с передачей их энергии в тепловое движение плазмы и обратный процесс теплового излучения. Если рассеивающий слой оптически тонкий, τ≪1, то его влияние на излучение пренебрежимо мало. Если 1≪τ≪τтерм, то термализацию можно не учитывать. Проходя через такой слой, излучение ослабляется за счет рассеяния примерно в τ раз. Наконец, если τ≫τтерм, то все падающее излучение поглощается плазмой, а интенсивность выходящего излучения ε+0,5Bω(T) зависит только от параметров самой плазмы.
Излучение на высших гармониках и в той моде первой гармоники, которая слабо взаимодействует с плазмой, переносится так же, как в столкновительной плазме с температурой T⊥.
Бесстолкновительная плазма в намагниченном вакууме отличается от рассмотренных случаев тем, что излучение в обеих модах на первой гармонике существенно влияет на поперечную температуру электронов. Это приводит к своеобразному эффекту конверсии мод, когда, например, поглощение обыкновенного излучения сопровождается испусканием необыкновенного, так что при рассеянии энергия передается от одной нормальной волны к другой. Приведенный выше качественный анализ позволит понять особенности действия циклотронного механизма излучения в различных астрофизических объектах.
2. Циклотронное излучение из активных областей на Солнце
Астрофизические аспекты применения циклотронного механизма для объяснения астрономических явлений стали обсуждаться в начале 60-х годов в связи с обнаружением дециметрового радиоизлучения Юпитера, а также с целью объяснить происхождение спорадического радиоизлучения Солнца. Первая гипотеза нуждалась в магнитных полях около 1000 Гс. В те годы величина магнитного поля Юпитера была неизвестна. Позднее прямыми измерениями было установлено, что магнитное поле Юпитера составляет лишь десятки гаусс. Это обстоятельство сделало нереальным предположение о циклотронном механизме дециметрового излучения Юпитера. Вполне возможно, однако, что более низкочастотное (декаметровое) радиоизлучение Юпитера в конечном счете обусловлено циклотронным механизмом; однако детальная картина процессов генерации декаметрового радиоизлучения остается неясной.
Первое успешное применение в астрофизике циклотронный механизм нашел в теории медленно меняющейся компоненты (s-компоненты) солнечного радиоизлучения. Эта компонента излучается из активных областей нижней короны и хромосферы, связанных с солнечными пятнами1. Согласно теории, микроволновое излучение с длиной волны λ≈1-30 см представляет собой циклотронное излучение на низших гармониках гирочастоты. Оно возникает в неоднородном магнитном поле над солнечными пятнами в гирорезонансных слоях, где ω=2πc/λ≈ωB (подробнее см. статью В.В. Железнякова "Радиационные дисконы" в этом томе). Слои, соответствующие высоким гармоникам при фиксированной частоте ω, лежат выше, в области более слабого магнитного поля (см. рис. 1). С увеличением частоты вся система гирорезонансных слоев перемещается вниз, к солнечной фотосфере, где магнитное поле сильнее.
Плазма в активной области над пятном – плотная и столкновительная. Поглощение циклотронного излучения при прохождении сквозь гирорезонансный слой характеризуется оптической толщиной τs. В конкретных условиях солнечной короны и хромосферы τs≫1 для низких гармоник с s=1, 2, 3 на необыкновенных волнах и s=1, 2 на обыкновенных волнах. Напротив, слои с большими значениями s, как правило, прозрачны для радиоволн ( τs≪1); слабо поглощая и излучая, они не дают заметного вклада в наблюдаемое радиоизлучение.
Модель оптически толстых гирорезонансных слоев над солнечными пятнами лежит в основе теории, дающей единое объяснение спектра, поляризации и распределения "радиояркости" по источнику s-компоненты. Такие слои полностью поглощают все радиоизлучение, которое подходит к ним снизу, со стороны Солнца, и испускают равновесное излучение с температурой, равной кинетической температуре плазмы в гирорезонансном слое. Его спектральная интенсивность (в области частот ħω≪kT) определяется законом Рэлея-Джинса:
Iω≈Bω(T) ≈(kT/4)(ω2/(π3 c2)). | (2) |
На низких частотах ω<ωmax, для которых эффективно излучающие слои s=2 и 3 находятся в горячей короне с температурой T≈106 К, интенсивность Iω≈Bω(T) ∝ω2T и убывает по мере уменьшения частоты. В области ω>ωmax гирорезонансные слои опускаются в хромосферу. Этот переход сопровождается резким уменьшением кинетической температуры T в излучающих слоях. Соответственно убывает и величина Iω≈Bω(T) ∝ω2T, несмотря на рост ω2. В результате частотный спектр циклотронного излучения над пятном Iω(ω) имеет максимум на частоте ωmax (разной для разных типов волн); именно на этой частоте эффективно излучающие слои s=2 (для обыкновенной волны) и s=3 (для необыкновенной волны) пересекают границу между фотосферой и короной. Излучение из лежащих ниже гирорезонансных слоев сильно поглощается в указанных слоях s=2 и 3 и не может наблюдаться на Земле. Заметим, что по величине ωmax в спектре наблюдаемого излучения локальных источников на Солнце можно судить о величине магнитного поля на границе между короной и хромосферой.
Что касается поляризации циклотронного излучения, то она появляется в диапазоне ω>ωmax и отсутствует на частотах ω<ωmax. На низких частотах слои s=2 и 3, ответственные за излучение обыкновенных и необыкновенных волн, наблюдаемых с Земли, располагаются высоко – в короне – с более или менее однородным распределением температуры. Поэтому интенсивность излучения из обоих слоев одинакова, то есть излучение неполяризовано. На высоких частотах гирорезонансные слои s=2 и 3 опускаются вниз, в переходную область между хромосферой и короной, где температура резко меняется с высотой. Разность температур в слоях s=2 и 3 приводит к сравнительно сильной поляризации циклотронного излучения с преобладанием необыкновенной компоненты, которая испускается из более высоко расположенного слоя s=3, где температура плазмы выше.
Такой характер частотного спектра и поляризации s-компоненты подтверждается многочисленными наблюдениями. Развитая теория позволила предсказать такие тонкие эффекты, как обнаруженное впоследствии уменьшение интенсивности излучения в середине солнечного пятна. Вскоре после разработки теории циклотронного излучения s-компоненты были зарегистрированы сравнительно высокие значения магнитных полей на границе между хромосферой и короной, полученные по величине ωmax в наблюдаемых спектрах s-компоненты, и сделан вывод о прогреве хромосферы над солнечными пятнами и соответствующем опускании вниз указанной границы. В настоящее время теория циклотронного излучения широко используется для получения информации о распределении температуры и магнитных полей в активных областях солнечной короны и верхней хромосферы по данным наблюдений локальных источников. Такие наблюдения ведутся, например, в России на телескопе РАТАН-600 и в США с помощью антенной системы VLA. Сопоставление теории с результатами наблюдений облегчается благодаря детальным расчетам характеристик циклотронного и тормозного излучения для различных моделей активных областей над пятнами и флоккулами.
Теория теплового циклотронного излучения, развитая в применении к Солнцу, используется (без существенных изменений) и для объяснения радиоизлучения вспыхивающих звезд типа UV Кита в период отсутствия вспышек. Это излучение по аналогии с s-компонентой на Солнце объясняется как циклотронное излучение электронов в магнитном поле звездных пятен.
3. Полосы циклотронного поглощения и излучения в спектрах магнитных белых карликов
По величине магнитного поля (до 107-109 Гс) магнитные белые карлики (поляры) занимают промежуточное положение между магнитными Ар-звездами (с полями 103-104 Гс) и нейтронными звездами. В таких полях циклотронные частоты лежат в инфракрасном (ИК), оптическом или даже ультрафиолетовом (УФ) диапазонах. Неудивительно поэтому, что обнаруженные в спектрах некоторых магнитных белых карликов сильные линии и полосы поглощения (рис. 2) сразу же были связаны с циклотронными эффектами. К тому же у звезд типа магнитных белых карликов было открыто рентгеновское излучение, что указывает на присутствие в окрестности этих звезд горячей плазмы с температурой T, достигающей 106-107 К (как у большинства известных звезд с корональным излучением и у солнечной короны).
Благодаря большой силе тяжести на поверхности белого карлика корональная плазма прижата к звезде, окружая ее тонким слоем высотой не более нескольких десятков километров. Если электронная концентрация N в этом слое превышает 1014-1015 см-3, то свойства плазмы на белых карликах, обладающих магнитными полями 107-108 Гс, ничем не отличаются от плазмы в солнечной короне и коронах Ар-звезд. Процессы циклотронного излучения и поглощения анализируются в этих условиях достаточно просто, поскольку благодаря частым столкновениям между частицами распределение излучающих электронов по скоростям сохраняется изотропным максвелловским. В спектрах звезд на гармониках, для которых плазма оптически толстая, возникают полосы в излучении, где интенсивность поднимается от фотосферной Iωфот ≈Bω(Tфот) с температурой Tфот≈20000-50000 К до уровня теплового излучения короны Bω(T) с температурой T≫Tфот. Ширина полос определяется неоднородностью магнитного поля по поверхности звезды. Если, например, магнитное поле звезды совпадает с полем магнитного диполя, расположенного в его центре, то индукция магнитного поля уменьшается вдвое от магнитного полюса к экватору звезды.
Ситуация становится иной, если корона магнитного белого карлика более разрежена (N<1014-1015 см-3) и в ней реализуется бесстолкновительный режим. Сильное циклотронное рассеяние в этом случае приводит к резкой анизотропии температур: поперечная по отношению к магнитному полю температура T⊥ может стать много меньше продольной температуры T∥ и опуститься даже ниже температуры фотосферы. Такой случай реализуется, если собственное излучение корональной плазмы достаточно мало.
Присутствие "холодной" по поперечным скоростям плазмы, окружающей белый карлик, объясняет появление в спектре непрерывного излучения его фотосферы провалов, соответствующих циклотронным линиям в поглощении. Поскольку магнитное поле неоднородно по поверхности звезды, эти линии размазываются в довольно широкие полосы. Если же оптическая толщина короны достаточно велика, циклотронное излучение бесстолкновительной короны может наблюдаться и в виде избытка над уровнем интенсивности фотосферы. Так, например, циклотронное излучение горячей корональной плазмы вокруг магнитного белого карлика GR 290 с индукцией B≈2,5·107 Гс и Tфот≈5,7·103 К должно проявляться в виде эмиссионной полосы в ИК-диапазоне, куда попадает гирочастота уже при плотностях плазмы N>1011 см-3. Рентгеновское излучение столь разреженной короны лежит далеко за пределами порога чувствительности существующих (и даже строящихся) рентгеновских телескопов. Таким образом, циклотронное излучение оказывается уникальным по эффективности индикатором плотности плазмы на магнитных белых карликах.
Помимо сравнительно тонких корон, структура которых определяется силами тяжести и газокинетического давления, на горячих магнитных белых карликах могут формироваться протяженные (с размером порядка радиуса звезды) плазменные оболочки, поддерживаемые силой давления излучения фотосферы на циклотронной частоте – радиационные дисконы (см. статью В.В. Железнякова "Радиационные дисконы" в этом томе). Исследования показали, что в случае, который реализуется на дисконах, гирорезонансный слой на первой гармонике пропускает примерно половину излучения в необыкновенной моде, эффективно взаимодействующей с плазмой, в то время как обыкновенная компонента беспрепятственно проходит плазменный слой. В результате в спектре дискона формируется полоса в поглощении на уровне около 75 % от интенсивности излучения фотосферы. Возможно, именно так возникают полосы депрессии в УФ-спектрах белых карликов с сильным магнитным полем GD 229, PG 1031+234 и GrW+70°8247 – кандидатов в радиационные дисконы.
Более детальные заключения о плотности плазмы вокруг магнитных белых карликов и о характере ее распределения по поверхности звезды можно получить, сопоставляя наблюдаемые инфракрасные, оптические и ультрафиолетовые спектры с результатами строгих расчетов на основе развитой теории взаимодействия излучения с плазмой в сильных магнитных полях. Успеха в этом направлении можно достичь совершенствуя как методы расчета циклотронных спектров, так и модели атмосфер магнитных белых карликов.
4. Циклотронные линии в спектрах рентгеновских пульсаров и источников гамма-всплесков
Общепринято представление о том, что рентгеновские пульсары связаны с нейтронными звездами. Аргументом в пользу такой связи для рентгеновских пульсаров служит малый период следования импульсов излучения и исключительно высокие значения индукции магнитного поля B в источнике, характерные для нейтронных звезд. Конкретные значения B ≈ 4·1012 и 2·1012 Гс были определены по частотам циклотронных линий рентгеновских пульсаров Геркулес Х-1 и 4U 0115-69. Один из примеров таких спектров представлен на рис. 3. Гипотеза о наличии циклотронных особенностей в спектрах рентгеновских пульсаров была выдвинута советскими астрофизиками Ю.Н. Гнединым и Р.А. Сюняевым еще до обнаружения таких линий в спектрах излучения рентгеновских пульсаров.
Нейтронные звезды – рентгеновские пульсары – входят в состав двойных систем. Вторая компонента такой системы служит источником вещества, поступающего на поверхность нейтронной звезды. Сильное магнитное поле направляет поток вещества на магнитные полюса. Там образуются горячие полярные пятна, состоящие из плазмы, разогретой до температуры T≈108 К. Она и служит источником рентгеновского излучения, которое при наблюдении из Солнечной системы приобретает пульсирующий характер вследствие вращения нейтронной звезды.
Если короны обычных звезд и белых карликов заполнены классической плазмой, то на нейтронных звездах из-за высоких значений магнитных полей плазма может стать квантованной: в такой плазме ħωB>kT⊥, а сам вакуум приобретает отчетливо выраженный поляризованный и намагниченный характер. В горячей плазме на нейтронных звездах вследствие весьма редких столкновений между частицами переходы электронов с одного уровня Ландау на другой носят в основном радиационный характер. При этом поглощение кванта ħω ≈ ħωB электроном (с переходом на более высокий уровень энергии) сопровождается обратным переходом в прежнее состояние, как правило, с излучением кванта ħω, но уже в другом направлении. В целом эти два радиационных перехода можно трактовать как циклотронное рассеяние в линии ω≈ωB. Вдали от гирочастоты рассеяние становится нерезонансным (томсоновским).
Предположение о ключевой роли рассеяния в формировании спектров рентгеновских пульсаров легло в основу модели изотермического горячего пятна, объясняющей появление циклотронных линий. В этом случае концентрация плазмы меняется по барометрическому закону N ∝ e -H /H 0 с приведенной высотой H0≈100 см (для T≈108 К). Как показывает анализ, интенсивность циклотронного излучения из такой атмосферы есть Iω≈MB 1/3Bω(T) , где параметр MB=ε/τ≪1, то есть она мала по сравнению с равновесной интенсивностью Bω(T). На частотах вдали от гирочастоты ωB рассеяние излучения перестает быть резонансным и его эффективность сильно уменьшается. При этом величина соответствующего параметра MT , который определяется относительно высокой ролью тормозного поглощения (за счет столкновений между частицами) по сравнению с нерезонансным рассеянием, резко возрастает ( MB≪MT≪1). Поэтому в выходящем излучении на фоне непрерывного спектра, уже ослабленного вследствие томсоновского рассеяния, возникает циклотронная линия в поглощении. Отметим, что величина температуры плазмы T≈108 К в рассматриваемой модели рентгеновского пульсара выбирается так, чтобы форма теоретического спектра излучения в континууме соответствовала наблюдаемому.
5. Космические гамма-всплески
Важнейшими в понимании природы всплесков являются тип их источника и расстояние до него. Во второй половине 80-х годов детекторами гамма-всплесков на японском спутнике ГИНГА зарегистрированы три случая, когда в спектрах всплесков наблюдались две линии в поглощении на кратных частотах. Они сразу же были интерпретированы как циклотронные линии на первой и второй гармониках гирочастоты в магнитном поле B≈2·1012 Гс. Такое объяснение связывало источники всплесков с магнитными нейтронными звездами. Уровень излучения на второй и более высоких гармониках зависит от интенсивности излучения на гирочастоте. Это дает возможность рассчитать абсолютное значение уровня излучения в источнике. Сравнивая его с наблюдаемым, можно определить расстояние до источника. Согласно расчетам, источники всплесков, зарегистрированные спутником ГИНГА, должны располагаться в диске нашей Галактики.
6. Заключение
История исследований циклотронного механизма излучения, введенного в астрофизику более 30 лет назад, наглядно демонстрирует ту важную роль, которую он играет в космических объектах с сильным магнитным полем. Изучение циклотронных процессов на Солнце позволило разработать теорию микроволнового излучения локальных источников, которая широко применяется в настоящее время для объяснения радиоастрономических наблюдений и для получения сведений о температуре и магнитных полях в активных областях солнечной короны и хромосферы, а также указать на реальную возможность регистрации циклотронных линий в спектре солнечного радиоизлучения. В последние годы предложено объяснение циклотронных линий и полос, обнаруженных в оптических спектрах магнитных белых карликов, основанное на анализе взаимодействия излучения с горячей плазмой на этих звездах. В процессе такого анализа была развита теория их корон, состоящих из бесстолкновительной плазмы с резкой анизотропией температур. В рамках простых моделей излучающей области были установлены также причины формирования циклотронных линий в спектрах рентгеновских пульсаров и линий на кратных частотах в спектрах космических гамма-всплесков (если последние генерируются на нейтронных звездах). Вместе с тем астрофизические приложения циклотронного механизма стимулировали развитие теории циклотронного излучения, поглощения и рассеяния для весьма разнообразных условий. Они также привели к обнаружению и исследованию новых электромагнитных неустойчивостей в плазме, которые широко используются в солнечной радиоастрономии. В целом исследования циклотронного механизма привели к пониманию наблюдаемых характеристик частотных спектров излучения широкого класса объектов, начиная с классической плазмы солнечной короны и кончая электронно-позитронной плазмой в намагниченном вакууме на нейтронных звездах. Они открыли также реальные перспективы для дальнейшего исследования космических объектов по их циклотронному излучению.
Литература
- Излучение в астрофизической плазме. М.: Янус-К, 1997.
- Радиоизлучение Солнца и планет. М.: Наука, 1964.
... пятнами1 Напомним, что атмосферу Солнца условно можно разделить на фотосферу с температурой Tфот≈6000 К, от которой на Землю приходит оптическое излучение в непрерывном спектре; хромосферу, расположенную на несколько тысяч километров выше фотосферы, где формируется линейчатый спектр Солнца, и, наконец, корону – самую разреженную и горячую часть солнечной атмосферы. Температура короны составляет около миллиона градусов. Повышение температуры плазмы от хромосферных до корональных значений происходит в относительно узком переходном слое. Солнечная плазма пронизана магнитными полями. Иногда на фоне яркого солнечного диска наблюдаются темные пятна – участки фотосферы, где из глубины Солнца наружу выходят сильные магнитные поля. Магнитное поле отдельного пятна напоминает поле вблизи конца стержневого магнита, если считать, что он находится под поверхностью Солнца и край его располагается на уровне фотосферы.Напомним, что атмосферу Солнца условно можно разделить на фотосферу с температурой Tфот≈6000 К, от которой на Землю приходит оптическое излучение в непрерывном спектре; хромосферу, расположенную на несколько тысяч километров выше фотосферы, где формируется линейчатый спектр Солнца, и, наконец, корону – самую разреженную и горячую часть солнечной атмосферы. Температура короны составляет около миллиона градусов. Повышение температуры плазмы от хромосферных до корональных значений происходит в относительно узком переходном слое. Солнечная плазма пронизана магнитными полями. Иногда на фоне яркого солнечного диска наблюдаются темные пятна – участки фотосферы, где из глубины Солнца наружу выходят сильные магнитные поля. Магнитное поле отдельного пятна напоминает поле вблизи конца стержневого магнита, если считать, что он находится под поверхностью Солнца и край его располагается на уровне фотосферы.
Публикации с ключевыми словами:
магнитное поле - электроны - Плазма - циклотронное излучение - циклотронные линии
Публикации со словами: магнитное поле - электроны - Плазма - циклотронное излучение - циклотронные линии | |
См. также:
Все публикации на ту же тему >> |