Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 
На сайте
Астрометрия
Астрономические инструменты
Астрономическое образование
Астрофизика
История астрономии
Космонавтика, исследование космоса
Любительская астрономия
Планеты и Солнечная система
Солнце

Акустооптика Акустооптика
10.08.2001 23:25 |

Акустооптика - пограничная область между физикой и техникой, в которой изучается взаимодействие электромагнитных волн со звуковыми и разрабатываются основы применения этих явлений в технике. Взаимодействие света со звуком используется в современной оптике, оптоэлектронике, лазерной технике для управления когерентным световым излучением. Акустооптические устройства позволяют управлять амплитудой, частотой, поляризацией, спектральным составом светового сигнала и направлением распространения светового луча. Важной областью практического применения акустооптических эффектов являются системы обработки информации, где акустооптические устройства используются для обработки СВЧ-сигналов в реальном масштабе времени.

Под действием механических деформаций, переносимых звуковой волной, возникает пространственная модуляция оптических свойств среды, обусловленная упруго-оптическим, или фотоупругим, эффектом (см. Фотоупругость). Оптические свойства среды меняются во времени с частотой звуковой волны, т. е. значительно медленнее и по сравнению с периодом электромагнитных колебаний в световой волне, и по сравнению со временем прохождения светового луча через звуковой пучок. В зависимости от соотношения между поперечным размером падающего оптического пучка d и длиной звуковой волнм $\lambda$ распространение света в такой среде сопровождается явлениями либо акустооптической рефракции, либо дифракции света на ультразвуке. Дифракция света происходит не только на вводимой извне звуковой волне, но и на коллективных возбуждениях среды - акустических фононах, в результате чего возникает рассеяние света со сдвигом частоты вверх и вниз на величину частоты фонона (Мандельштама-Бриллюэна рассеяние). В спектре рассеянного излучения появляются пары сдвинутых по частоте компонент Мандельштама-Бриллюэна, отвечающих рассеянию света на продольных и поперечных акустических фононах.

Акустооптическое взаимодействие сводится к эффектам оптической рефракции и дифракции лишь при низких интенсивностях оптического излучения. С повышением интенсивности света все возрастающую роль начинают играть нелинейные эффекты воздействия света на среду. Из-за электрострикции и эффектов нагревания среды оптическим излучением в ней возникают переменные упругие напряжения и генерируются звуковые волны с частотами от слышимых до гиперзвуковых - т. н. оптоакустические или фотоакустические явления.

В поле мощного оптического излучения в результате одновременного протекания процессов дифракции света на УЗ и генерации УЗ-волн вследствие электрострикции происходит усиление светом УЗ-волны. В частности, при распространении в среде интенсивного лазерного излучения наблюдается т. н. вынужденное рассеяние Мандельштама-Бриллюэна, при котором происходит усиление лазерным излучением тепловых акустических шумов, сопровождающееся нарастанием интенсивности рассеянного света. К оптоакустическим эффектам относится также генерация акустических колебаний периодически повторяющимися световыми импульсами, которая обусловлена переменными механическими напряжениями, возникающими в результате теплового расширения при периодическом локальном нагревании среды светом.

Эффекты акустооптического взаимодействия используются как при физических исследованиях, так и в технике. Дифракция света на УЗ дает возможность измерять локальные характеристики УЗ-полей. По угловым зависимостям дифрагированного света определяются диаграмма направленности и спектральный состав акустического излучения. Анализ эффективности дифракции в различных точках образца позволяет восстановить картину пространственного распределения интенсивности звука. В частности, на основе акустооптических эффектов осуществляется визуализация звуковых полей. С помощью брэгговской дифракции удается получить информацию о спектральном, угловом и пространственном распределении акустических фононов в ДВ-области фононного спектра. Этот метод представляет ценность для изучения неравновесных акустических фононов, например, в условиях фононной (акустоэлектрической) неустойчивости в полупроводниках, обусловленной усилением УЗ сверхзвуковым дрейфом носителей заряда (см. Акустоэлектронное взаимодействие).

Акустооптическая дифракция позволяет также измерять многие параметры вещества: скорость и коэффициент поглощения звука, модули упругости 2-го, 3-го и более высоких порядков, упругооптич. постоянные и др. величины. Так, из условия Брэгга по известным значениям частоты УЗ f и длины волны света $\lambda$, и по измеренному углу $2\theta_Б$ между падающим и дифрагированными световыми лучами определяют скорость звука: cзв=$\lambda f/2 \sin \theta_Б$ (где $2\theta_Б$ - угол Брэгга). На основе полученных таким образом значений сзв, для различных направлений рассчитывается полная матрица модулей упругости $C_{ij}$. Коэффициент поглощения звука $\alpha$ можно найти, сравнивая интенсивности $I_1$ и $I_2$ дифрагированного света, измеренные при двух положениях падающего светового луча, смещенных друг относительно друга на расстояние а вдоль направления распространения звуковой волны:
$\alpha={\displaystyle 1\over\displaystyle 2a}\ln{\displaystyle I_1\over\displaystyle I_2}$.
При распространении в среде звуковых волн большой интенсивности данные о модулях упругости высших порядков получают измеряя с помощью брэгговской дифракции амплитуды возникающих в волне гармоник (см. Нелинейная акустика), которые пропорциональны нелинейным модулям упругости соответствующих порядков.

Для исследования дисперсии скорости звука и коэффициента его поглощения на гиперзвуковых частотах используется рассеяние Мандельштама-Бриллюэна. Пропуская через среду луч когерентного оптического излучения и фиксируя угол рассеяния $\theta$, можно из условий Брэгга по величине спектрального сдвига f компонент Мандельштама-Бриллюэна определить скорость звука сзв на данной частоте f. На основе измерений полуширины $\delta f$ компонент Мандельштама-Бриллюэна определяется коэффициент поглощения $\alpha$ на этой частоте: $\alpha=2\pi\cdot\delta f/c_{зв}$.

На основе оптоакустической генерации звука создан метод фотоакустической спектроскопии для получения спектров оптического поглощения веществ в различных физических состояниях. В этом методе коэффициент поглощения света измеряется по интенсивности звуковых колебаний, возбуждаемых периодически прерываемым светом. Например, при периодическом нагреве газа в нем возникают звуковые колебания с амплитудой, пропорциональной поглощенной световой энергии. Меняя длину волны падающего света, можно получить фотоакустический спектр вещества - полный аналог спектра поглощения, измеряемого обычными методами. Достоинство фотоакустической спектроскопии в высокой чувствительности метода, позволяющего получать спектры оптического поглощения в широком диапазоне световых длин волн, включающем в себя как области сильного поглощения, так и области прозрачности; кроме того, этим методом измеряется только та часть энергии падающего излучения, которая действительно поглощается веществом, а рассеянное излучение никакого вклада не дает. Это позволяет исследовать спектры поглощения образцов с плохим качеством поверхности: порошков, рыхлых, пористых материалов, биологических объектов.

Акустооптические устройства. На основе эффектов дифракции и рефракции света на УЗ создаются активные оптические элементы, позволяющие управлять всеми параметрами светового луча, а также обрабатывать информацию, носителем которой являются как световая, так и звуковая волны. Основу таких устройств составляет акустооптическая ячейка (АОЯ), состоящая из рабочего тела (твердотельного образца или кюветы с жидкостью), в объеме которого происходит взаимодействие света с УЗ-волной, и излучателя УЗ (обычно пьезоэлектрического преобразователя). В зависимости от назначения имеется несколько типов акустооптических приборов: дефлекторы, модуляторы, фильтры, процессоры и др.

Акустооптические дефлекторы и сканеры - устройства для управления направлением светового луча в пространстве. Сканеры предназначаются для непрерывной развертки луча; в дефлекторе имеется набор фиксированных направлений, по которым должен отклоняться световой луч.

В дифракционном дефлекторе (рис. 1) луч света падает на АОЯ, в которой возбуждается звуковая волна частоты f и в результате брэгговской дифракции частично отклоняется. При изменении f меняется и угол отклонения дифрагированного луча и луч перемещается по экрану фотоприемного устройства. Использование частотно-модулированных звуковых сигналов (см. Модуляция колебаний) позволяет управлять направлением светового луча. Чтобы изменить направление дифрагированного луча при неизменном угле падения света на АОЯ, необходимо одновременно с частотой менять и направление распространения звуковой волны, так чтобы условие Брэгга выполнялось повсюду внутри интервала $\Delta f$ звуковых частот - т. н. полосы пропускания дефлектора. $\Delta f$ определяет и др. параметры прибора: максимальное угловое перемещение луча дифрагированного света
$\psi={\displaystyle\lambda\over\displaystyle c_{зв}\cos\theta_Б}\Delta f$
и разрешающую способность N, т. е. число различимых положений светового луча в пределах $\psi$. Разрешающая способность определяется величиной $\psi$ и угловой расходимостью $\gamma_{опт}$ светового пучка: $N=\psi / \gamma_{опт}=\psi d/ \lambda$, где d - поперечный размер светового пучка. Важной характеристикой устройств пространственного управления лучом является также эффективность дифракции $\eta=I_1/I_0$ - отношение интенсивности I1 отклоненного света к интенсивности I2 падающего. В простейшем случае условия Брэгга выполняются благодаря расходимости акустического пучка. Расходящийся пучок можно рассматривать как совокупность плоских волн, волновые векторы которых лежат внутри углового интервала $\gamma$ак. Для заданной частоты звука f дифракция будет происходить лишь на той компоненте пучка, для которой волновой вектор удовлетворяет условию Брэгга. При изменении f эт